RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. THIRD SEMESTER EXAMINATION, DECEMBER 2019

SECOND YEAR (BATCH 2018-21)

PHYSICS (General)

Date : 19/12/2019 Time : 11 am – 1 pm

Paper : III

Full Marks: 50

[Use a separate Answer Book for each Group]

Group – A

Answer any four questions from Question Nos. 1 to 6: [4×5] Show graphically the energy distribution curve of gas molecules. Hence discuss how it is 1. a) different from velocity distribution curve. [3] If the r.m.s. velocity of H₂ at N.T.P. is 1.84 Km/s, calculate the r.m.s. velocity of O₂ at N.T.P. b) Molecular weights of H₂ and O₂ are 2 and 32 respectively. [2] 2. a) 2 mole of hydrogen gas at 30°C are mixed with one mole of helium gas at 60°C. Find the temperature of the mixture. [3] State and explain the principle of equipartition of energy. [2] b) What do you understand by equation of state? Express the equation for real gases in terms of 3. a) virial-coefficients. Define Boyle temperature from the equation. [3] What are the critical constants of a gas? [2] b) Discus briefly the considerations which led Van-Der-Walls to modify the gas equation. 4. a) [2] Using Berthelot's equation of state $\left(p + \frac{a}{TV^2}\right)(v-b) = RT$. Show that the critical constants b) are given by $P_c = \frac{1}{12h} \sqrt{\frac{2aR}{3h}}$; $V_c = 3b$ and $T_c = \sqrt{\frac{8a}{27Rh}}$. [3] a) Deduce an expression for the work done in an adiabatic expansion of a perfect gas in terms of 5. [3] temperature. b) A quantity of air at N.T.P is adiabatically compressed to $\frac{1}{5}$ th of its volume. Calculate the rise of its temperature. Y for air = 1.41. [2] 6. Define entropy. What is its physical significance? Show that entropy remains constant in a reversible process but increases in a irreversible process. [1+1+3]Group – B Answer any six questions from Question Nos. 7 to 16: [6×5] Deduce an expression for magnetic field due to circular current loop. Show variation of magnetic 7. field along the axis of circular loop graphically. [3+2]Show that it two coils having co-efficient of self inductance L_1 and L_2 are mutually coupled 8. together so that the whole of the flux from one coil links with the other, then the mutual inductance between the two coils is given by $M = \sqrt{L_1 L_2}$. [5]

- 9. Establish the equation of continuity relating the charge density and current density at a point in a medium.
- 10. Apply Thevenin's theorem to determine the current through the resistor R in the adjoining circuit and its terminal potential difference.

[5]

[5]

- 11. a) State Thevenin's theorem in circuit network.
 - b) Using Thevenin's theorem, find the current through the $2K\Omega$ resistor in the circuit given below: [2+3]

- 12. A charged capacitor is allowed to discharge itself through a resistance. Show graphically the time variation of current in the circuit. [3+2]
- 13. a) What do you mean by motional emf?
 - b) Two coils with self-inductance L₁ and L₂ respectively, having mutual inductance M. Find an expression for their co-efficient of coupling (K). [3]

[2]

[2]

[2+1]

[3]

[2]

- 14. A 40μ F capacitor in series with a 2000 ohms resistor is connected across a 200 Volt D.C. source. Determine (i) the initial current (ii) the time constant (iii) the value of the current when time is equal to time constant. [2+1+2]
- 15. a) Under what conditions can current be supplied to an AC circuit without delivering power to it?
 - b) A capacitor of 250 pF is connected in parallel with a coil having inductance of 16mH and effective resistance 20Ω . Calculate: (i) the resonance frequency and (ii) circuit impedance at resonance.
- 16. a) A DC source of voltage V is suddenly applied to a circuit containing a resistance R and an inductor L in series. Write down the instantaneous emf equation and hence find the value for the instantaneous current.
 - b) A relay has an inductance of 10H and a resistance of 100Ω and operate with a current of 2mA. How long will the relay take to operate when a p.d. of 0.5V is suddenly applied across it?

_____× _____